

cβ Iron Dominated Magnets

Holger Witte Brookhaven National Laboratory Energy Frontier Accelerator Group

2D Geometry Qf/Qd

Magnetization

Less stringent requirements on iron

Cell

xf = -7.462mm xd = 20.802mm

Rotations:

Qf: 1.140°

Qd: -1.0787°

a: 2.562°

β: -2.43822°

Pole Old/New

No noticeable change in gradient quality Pole shape seems very robust

Gradient quality

Quad Corrector

Coil: $8x10mm^2$ J = $1A/mm^2$

Gradient Quality

Iron

SiFe: no change in gradient or quality

3D Tracking

See Scott's talk...

Status Demonstrator

Delays: customs / clearance

Yokes have arrived

Poles: laminations prepared by wire eroder

Permanent Magnets

- PMs: two suppliers
 - Vacuumschmelze
 - PMs measured by VAC
 - Procurement started beginning of February
 - Lead-time: 8-10 weeks
 - Updated shipping date: June 2nd
 - Exploring partial delivery / expedited shipping
 - Allstar Magnetics
 - At BNL
 - Not measured

BNL Insertion Devices Group Helmholtz Coil

Thanks to Toshiya Tanabe & Chris Eng Mike Anerella, Jesse, Ray + Mike

Flux Measurements

Absolute value?

Br Qd

Variation: +/-0.5%

Matching of Blocks

- Total pool Qd: 120 PMs
- Find four sets of 24 PMs each, which deliver same amount of flux
- Simple algorithm:
 - 100k iterations
 - Pick random blocks
 - Keep results if better than previous result
- Result:

-2.2848999+/-9.36616250119e-06

Beam Pipe

Flat beam pipe allows correctors to be placed within magnets

Dipole Corrector

Needs work

(Pole shape: superseded)

2.1mT eq. to 125 um displacement

Gradient quality unaffected

P=3W/m

Skew Dipole

Needs work

J=1A/mm² FQ=15%

P=15W/m

To Do List

- Magnet design
 - Incorporate temperature compensation
 - Block sizes
 - Re-evaluate margin, re-iterate geometry
- Demonstrator
 - Assemble Qd
 - Measure blocks for Qf
 - Measure Qd/Qf separately